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Abstract 
 

 
 This study was conducted to develop regional hydraulic geometry curves for the 
Santa Cruz Mountains that could be used in stream related and/or engineering projects. 
Data used to form these curves was collected from the USGS and by conducting stream 
geometry surveys. The resulting regional curves had high R² values ranging from .82 to 
.92. Compared to other regional curves in nearby areas, the Santa Cruz Mountains 
regional curve equations have higher exponents, meaning bankfull channel measurements 
increase at faster rates as drainage areas increases. Further measurements and analysis 
should be done before applying these curves to project sites.  
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Introduction: 
 

Regional hydraulic geometry curves compare bankfull channel dimensions with drainage 

area at various locations within a defined region. The channel geometry measurements are 

graphed on log-log plots and compare bankfull top width, mean depth, and cross-sectional area to 

the corresponding drainage area (NRCS, 2009). These curves are useful because bankfull channel 

geometry is often needed for stream related projects, but is difficult to measure. In-field 

measurements of bankfull characteristics can be error prone, tedious, or costly. Drainage area, on 

the other hand, is relatively easy to measure for a given site on a stream by using various tools 

such as the polar planimeter, dot grid or ArcMap. The curves can be used in future projects to 

estimate bankfull measurements by measuring the drainage area of the project site. 

Regional hydraulic geometry curves are especially useful in stream restoration projects 

where the stream is so degraded that natural bankfull channel geometry can no longer be 

determined and a reference reach is unavailable. A well established regional curve can provide an 

estimate of the bankfull channel shape at a restoration project site. Regional curves can also be 

used on projects such as road, bridge or culvert construction, as well as scientific studies 

involving bankfull. Regional curves should only be applied to projects within the same region or 

to a region that has scientific evidence showing that it follows the same hydraulic geometry 

curves.  

History: 

The first data set of bankfull channel geometry was collected from the Upper Salmon 

River in Idaho in the early 1970’s and arranged into hydraulic geometry curves by William 

Emmett in 1975 (Emmett, 1975). Luna Leopold assembled bankfull channel geometry data for 

the Upper Green River in Wyoming in the mid 1970’s as well as data sets for the San Francisco 

Bay region and Southeastern Pennsylvania (Dunne and Leopold, 1978). These data sets were 
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arranged into regional curves and published by Thomas Dunne and Luna Leopold (Dunne and 

Leopold,1978) in the late seventies. Since then, federal, state and local agencies have been 

working together to develop regional hydraulic geometry curves across the country. Hydrologists, 

engineers, foresters and natural scientists can use well developed regional curves for stream 

restoration projects, assessment of stream health, culvert construction and future project planning.  

In the future factors influencing the equation of the curve may be determined and possibly 

modeled by comparing Regional Hydraulic Geometry Curves.  

Study Location: 

Santa Cruz Mountains 

The selected region for the development of the hydraulic geometry curves is the Santa 

Cruz Mountains. The mountain range runs down the southern San Francisco Peninsula from south 

of San Francisco to about 5 miles southeast of Gilroy. The mountains are bounded on the east by 

the Santa Clara Valley and on the west by the Pacific Ocean. The range is located in three 

counties: Santa Cruz, Santa Clara, and San Mateo. According to the NRCS region divisions, the 

Santa Cruz Mountains are part of the California Coast Ranges. The Santa Cruz Mountains have 

many streams ranging from small, unnamed ephemeral streams to large perennial streams such as 

Pescadero Creek. 

Santa Cruz County has a temperate climate with a relatively uniform temperature 

throughout the county due to the marine influence and the mountain range that blocks winds. The 

Santa Cruz Mountains receive 60 inches of precipitation annually on average. Precipitation can 

range from 30 inches in the driest years to 90 inches in the wettest years. Snowfall is less than 

five inches and is limited to the highest points of the Santa Cruz Mountains. (SCS, 1976) 
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Measurement Sites 

Data was collected from eight sites along streams in the Santa Cruz Mountains to develop 

the regional curves. Four sites are located at USGS stream gages and four sites are ungaged. The 

gaged sites all have at least ten years of peak streamflow records. The four gaged sites listed from 

north to south are: Pescadero Creek near Pescadero, San Lorenzo River near Boulder Creek, San 

Lorenzo River at Big Trees at Henry Cowell Redwoods State Park, and Soquel Creek at Soquel. 

The ungaged sites listed from north to south are: Opal Creek at Big Basin Redwoods State Park, 

East Branch of Soquel Creek at Soquel Demonstration Forest, Fall Creek at Felton, and San 

Vicente Creek at CEMEX near Davenport (Figure 1).  

 

Figure 1-Map of Measured Sites and Watersheds in the Santa Cruz Mountains. Note how 

some watersheds encompass smaller watersheds. 

 

 3



  

The watershed of the Fall Creek site and the watershed of San Lorenzo River near Boulder Creek 

site are both part of the watershed of the San Lorenzo River at Big Trees site. The watershed of 

the site on the East Branch of Soquel Creek is part of the watershed of the site on Soquel Creek at 

Soquel. Maps of each site location are in Appendix A.  

Bankfull Stage and Discharge:  
 

Bankfull discharge, also known as effective discharge, has been identified as the 

dominant channel forming flow (Wolman and Miller, 1960). The most effective discharge over 

time is neither the very common low flows nor the very rare high flows. Instead, the effective 

discharge is a moderately high flow and has a return interval around 1.5 years (Leopold, 1994). 

This streamflow is most effective at moving sediment, forming or removing bars, forming or 

changing bends and meanders, and generally doing work that results in the average morphologic 

characteristics of channels (Dunne and Leopold, 1978). It is often the flow that just fills the 

channel to the top at the slope break between the bank and the floodplain.  

Determination of the location of bankfull elevation in the field can be a challenge, even for 

experienced hydrologists and fluvial geomorphologists. Typical indicators of bankfull elevation 

are often used to locate the level of bankfull flow in the channel, but can sometimes be deceiving. 

Walking along a reach of the stream and taking multiple measurements can help give an idea of 

where bankfull is located. Some bankfull indicators according to Leopold (1994) include: 

 
1. The point bar is the sloping surface that extends into the channel from the convex bank of 

a curve. The top of the point bar is at the level of the floodplain because floodplains 
generally result from the extension of point bars as a channel moves laterally by erosion 
and deposition through time. 

2. The bankfull level is usually marked by a change in vegetation, such as the change from 
bare gravel bar to forbs, herbs or grass. Shrubs and willow clumps are sometimes useful, 
but can be misleading. Willows may occur below bankfull stage, but alders are above 
bankfull.  

3. There is usually a topographic break at bankfull. The stream bank may change from a 
sloping bar to a vertical bank. It may change from a vertical bank to a horizontal plane on 
top of the floodplain. The change in topography may be as subtle as a change in slope of 
the bank. 
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4. Bankfull is often registered by a change in the size distribution of materials at the surface, 
from fine gravel to cobbles, from sand to gravel or even fine gravel material. It can 
change from fine to coarse or coarse to fine, but a change is common. 

5. Even more subtle changes in the debris deposited between rocks, such as the amount of 
leaves, seeds, needles, or organic debris. Such indicators are confirmation rather than 
primary evidence. Flood-deposited debris alone should not be trusted.    
        

Study Goal:  
 

To create well-developed regional hydraulic geometry curves comparing drainage area to 

bankfull depth, width, area, and discharge that can be used for future projects in the Santa Cruz 

Mountains.  

Study Objectives: 
 

Before completion of this study, bankfull geometry measurements will be collected from 

four gaged stream locations by measuring bankfull stage height and using corresponding 9-207 

form data. Bankfull geometry measurements will also be collected from four ungaged stream 

locations by performing full cross-section surveys as well as measuring slope and roughness 

(Manning’s n). Bankfull measurements collected from the eight stream sites will be plotted on 

four separate graphs (one for each bankfull measurement) to develop regional hydraulic geometry 

curves for the Santa Cruz Mountains.  

Procedures: 
 

Measurements were collected from a total of eight stream sites within the Santa Cruz 

Mountains. At the four sites with gages, annual peak flow data was used to help calibrate the 

location of bankfull. Four sites with small drainage areas (<10 square miles) were selected in 

areas where land management projects are likely to be implemented. Due to the lack of stream 

gage data, more field measurements had to be taken at these locations. Full stream cross-section 

surveys were performed as well as measurements of slope and roughness.  
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Bankfull measurements at gaged stream sites: 

At gaged stream sites, most of the needed channel measurements were already available 

in the USGS database. Bankfull stage needed to be estimated to determine the other bankfull 

geometry measurements. This was done by using rating curves and previously collected USGS 

data (9-207 forms). A field sheet was created for each site to aid in calibration of bankfull 

location. To create the field sheet, annual peak flow data (discharge, gage height and date) for 

gaged stream sites within the Santa Cruz Mountains was obtained from the USGS database. Data 

was ranked by discharge in descending order to determine the probability and recurrence interval 

for each peak flow. Streamflow verses return interval was graphed to find the equation of the best 

fit curve (Figure 2). Also, rating curves were created for each site (Figure 3) to be used with the 

equation for streamflow verses return interval to create the field sheet of discharge, gage height 

and elevation for return intervals from 1-3 years at every tenth of a year (Table 1). This field 

sheet helped with identifying bankfull since bankfull is usually around the 1.5 year return interval 

flow (Leopold, 1994).  
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Soquel C A Soquel, CA y = 3463.9Ln(x) + 265.56
R2 = 0.9851
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Figure 2 – Example Graph of Peak Streamflow verses Return Interval. The equation of the curve 

derived from this graph was used to estimate bankfull streamflow, which has a recurrence interval 

of about 1.5 years.  

 

Rating Curve for Soquel C A Soquel, CA y = 0.0014x + 5.6015
R2 = 0.9159
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Figure 3 – Example Rating Curve. The equation of the rating curve was used to estimate bankfull 

gage height (see y-axis label above) from estimated bankfull streamflows.  
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Table 1 – Example Field Sheet. Flow and gage height are predicted for 1-3 year recurrence 

intervals using the streamflow vs. recurrence interval equation and rating curve equation. 

Field Sheet for Soquel C A Soquel, CA
21.38

Recurrence 
Interval (yrs) Flow (cfs)

Gauge 
Height (ft)

Feet above 
NGVD

1.0 265.6 5.97 27.35
1.1 595.7 6.44 27.82
1.2 897.1 6.86 28.24
1.3 1174.4 7.25 28.63
1.4 1431.1 7.60 28.98
1.5 1670.1 7.94 29.32
1.6 1893.6 8.25 29.63
1.7 2103.6 8.55 29.93
1.8 2301.6 8.82 30.20
1.9 2488.9 9.09 30.47
2.0 2666.6 9.33 30.71
2.1 2835.6 9.57 30.95
2.2 2996.7 9.80 31.18
2.3 3150.7 10.01 31.39
2.4 3298.1 10.22 31.60
2.5 3439.5 10.42 31.80
2.6 3575.4 10.61 31.99
2.7 3706.1 10.79 32.17
2.8 3832.1 10.97 32.35
2.9 3953.6 11.14 32.52
3.0 4071.0 11.30 32.68

Gauge datum (feet above NGVD) = 

 

In the field at the four gaged stream sites, bankfull stage was measured using an 

autolevel, tripod, and Philadelphia rod. Bankfull indicators were used first to locate bankfull stage 

and results verified with the field sheet. Bankfull discharge was calculated from gage height using 

the rating curve. USGS 9-207 forms for each gaged site were used to find the other bankfull 

measurements (Table 2). The data of each bankfull attribute was plotted with its corresponding 

discharge on separate graphs (Figure 4). The equations of the trend lines for these plots were used 

to calculate the bankfull measurements for the discharge calculated as bankfull discharge from 

field measurements. Drainage areas of gaged sites were provided in the USGS database. The data 

collected from these sites were then plotted on graphs to begin to form the regional curves.  
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Table 2 – Example 9-207 Form For Soquel Creek at Soquel, CA.  

Measurement Date Width Depth Area velocity Discharge Measurement Measurement 
Number   feet feet sq. feet fps cfs Rating Type 

60 5/8/1952 25 0.828 20.7 1.72 35.5 G WADING 
61 6/16/1952 14 1.143 16 0.93 14.9 G WADING 
62 6/30/1952 18 0.994 17.9 1 17.9 G WADING 
63 7/29/1952 11.7 1.111 13 0.7 9.1 G WADING 
64 8/18/1952 16 0.731 11.7 0.6 7 G WADING 
65 9/5/1952 8.6 0.884 7.6 0.68 5.2 G WADING 
66 9/18/1952 8.4 0.845 7.1 0.87 6.2 G WADING 
67 10/16/1952 8.7 0.759 6.6 0.97 6.4 G WADING 
68 11/6/1952 8.6 0.826 7.1 0.75 5.3 G WADING 
69 11/27/1952 8.4 0.702 5.9 1.17 6.9 G WADING 
70 12/5/1952 26 1.388 36.1 2.05 74 G WADING 
71 12/8/1952 37 1.270 47 2.17 102 G WADING 
72 12/31/1952 33 1.585 52.3 2.89 151 G WADING 
73 2/18/1953 27 0.804 21.7 1.08 23.4 G WADING 
74 3/10/1953 18 0.956 17.2 1.78 30.9 G WADING 
75 3/22/1953 31 1.526 47.3 1.75 83 G WADING 
76 4/3/1953 16.6 1.253 20.8 1.38 28.8 G WADING 
77 4/22/1953 30 0.883 26.5 0.66 17.6 G WADING 
78 4/28/1953 33.5 1.299 43.5 2.26 98.1 G WADING 
79 5/8/1953 28 0.764 21.4 1.34 28.6 G WADING 
80 5/26/1953 30 0.723 21.7 0.82 17.7 G WADING 
81 6/20/1953 18.4 0.739 13.6 0.91 12.4 G WADING 
82 7/7/1953 17 0.612 10.4 0.69 7.15 G WADING 
83 7/24/1953 10.2 0.474 4.83 1.33 6.41 G WADING 
84 8/8/1953 8 0.436 3.49 1.36 4.76 G WADING 
85 9/22/1953 10.5 0.727 7.63 0.63 4.82 G WADING 

 
 
 

Depth vs. Discharge
Soquel C A Soquel, CA
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Figure 4 – Example Bankfull Measurement vs. Discharge Data Plotted From 9-207 Form.  
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Bankfull measurements at ungaged stream sites: 

All bankfull channel geometry measurements were collected in the field at the ungaged 

sites. Stream channel geometry was measured using a laser level, tripod, receiver, Philadelphia 

rod, and cloth tape. Cross-section locations were chosen along a stream according to certain 

criteria such as a straight riffle reach between two meander bends, clear indicators of bankfull 

flow, presence of one or more terraces, channel section and form typical of the stream and a 

reasonably clear view of geomorphic features (NRCS, 2009). Cross-sections should measure two 

times the maximum channel depth in the cross-section at bankfull flow (NRCS, 2009). 15-25 

measurements were taken across the channel at significant slope breaks as well as at bankfull left 

and bankfull right (Figure 5). Bankfull width, depth, and cross-sectional area were calculated 

from these measurements. Bankfull width is the distance between bankfull left and bankfull right. 

Bankfull cross-sectional area was calculated using the trapezoid equation. Bankfull depth was 

calculated by dividing the bankfull cross-sectional area by bankfull width. Table 3 shows an 

example of collected and calculated measurements of a cross-section. Summaries of the cross-

section and site measurements for each ungaged site were placed in separate tables. Cross-section 

and site measurements were summarized for each ungaged site in separate tables (Table 4). See 

Appendix B for all ungaged site data.  
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Stream Cross-Section
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Figure 5 – Example Cross-section: East Branch of Soquel Creek at Soquel Demonstration Forest. 

 

 

Table 3 – Example of Collected and Calculated Bankfull Measurements. 

Distance (ft) Elevation (ft) Notes Area (sq ft) WP (ft)
0.0 97.38 RB pin
4.0 96.62
7.0 96.48
8.0 96.14

10.5 93.76
12.3 92.94
13.2 92.63 BFR
21.3 91.33 5.27 8.20
28.7 91.91 7.47 7.42
34.3 90.66 WER 7.53 5.74
38.4 89.46 10.54 4.27
41.3 89.7 8.85 2.91
45.6 90.11 11.72 4.32
49.7 90.85 WEL 8.82 4.17
57.4 91.55 11.01 7.73
62.8 92.63 BFL 2.92 5.51
63.8 92.94
70.5 95.07
71.9 96.14 Bottom of UC
74.2 97.69 UC
72.5 99.56
74.0 100.03 LB pin

Totals = 74.11 50.27  
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Table 4 – Example Summary of Cross-section and Site Measurements 

Slope = 1.42%
n = 0.043
WP = 50.27
Cross-sectional area = 74.11
R = 1.47
Bank full width = 49.6
Bank full depth = 1.49
Bank full discharge = 395.57

Watershed area (sq mi) = 10.930  

 

The slope of the stream channel and Manning’s “n” were measured so that bankfull 

discharge can be calculated using Manning’s equation:  

ARS
n

Q 2/13/249.1
=   

Where: 

R = 
WP

A
 

Q= discharge    

S= slope 

A= cross-sectional area           

WP= wetted perimeter  

Locations of the ungaged sites were well documented so that the study could be repeated and 

measurements could be verified. Photographs of the stream channel and bankfull indicators were 

taken while in the field for record (Appendix C). Detailed maps were drawn of the cross-section 

location including easily recognizable features, bearing of cross-section, temporary bench marks 

and north arrows (see Appendix D). Drainage areas were measured by digitizing the watersheds 

in ArcMap and calculating the geometry (Appendix A).  These smaller sites were then plotted on 

the regional curves along with the gaged sites (Figures 5-9). 
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Results: 

Bankfull geometry measurements collected from both gaged and ungaged sites are 

summarized in Table 5. Each bankfull attribute (cross-sectional area, width, depth and discharge) 

is plotted with respect to its corresponding drainage area on separate graphs (Figures 5-9). The 

regional curves presented are the least squares regression equation for each given data set. 

Hydraulic geometry curves from nearby regions are added for comparison purposes. Data 

collected from previous studies and watershed classes in Scotts Creek watershed in Swanton 

Pacific Ranch makes up the Scotts Creek regional curves. The Scotts Creek data was collected at 

different locations within the same watershed. The San Francisco Regional Curves, developed by 

Dunne and Leopold (1978), have also been added to the graphs and are shown by the red dashed 

lines. Unfortunately the only published San Francisco regional curve equation is the one for 

bankfull discharge, therefore all other San Francisco regional curves had to be added by copying 

the approximate locations of the endpoints from the text.  

 

Table 5 – Summary of Measurements for all Sites 

Type Site
Drainage 
Area

Cross-Sectional 
Area Width Depth Discharge

Recurrence 
Interval

Soquel 10.93 74.11 49.60 1.49 395.57 N/A
San Vicente 10.50 55.71 25.40 2.19 491.62 N/A
Opal 3.38 14.89 27.07 0.55 47.47 N/A
Fall 4.97 30.80 19.10 1.61 212.15 N/A
San Lor. BT 106 987.68 104.19 9.62 5136.56 2.69
SanLor. BC 6.17 108.41 23.85 1.65 383.80 2.61
Soquel 40.2 368.38 54.32 6.54 1827.50 1.57
Pescadero 45.9 312.07 52.53 5.92 1352.16 1.50

Gaged

Ungaged
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Bankfull Cross-Sectional Area vs Drainage Area
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Figure 6 – Bankfull Cross-Sectional Area vs. Drainage Area Regional Curves 

Bankfull Width vs Drainage Area
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Figure 7 – Bankfull Width vs. Drainage Area Regional Curves 
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Bankfull Depth vs Drainage Area
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Figure 8 – Bankfull Depth vs. Drainage Area Regional Curves 

Bankfull Discharge vs Drainage Area
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Figure 9 – Bankfull Discharge vs. Drainage Area Regional Curves 
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Analysis of Results:  

Bankfull Calibration 

 Identifying bankfull levels can be a challenging task, as discussed earlier. Some issues 

related to bankfull determination involved unnatural stream banks, dense vegetation, and bedrock 

banks. The gage site at the San Lorenzo River at Big Trees was below a large bridge that caused 

the banks to become unnatural, making bankfull indicators difficult to find. Bankfull indicators 

were difficult to locate at Fall Creek and Soquel Creek at the Soquel Demonstration Forest due to 

dense bank vegetation and litter. A reach adjacent to the Fall Creek survey location had one bank 

limited by bedrock and did not reveal any clear bankfull indicators. Both Opal Creek and San 

Lorenzo River near Boulder Creek had clear point bars that were used as bankfull indicators. 

The calibration procedure used USGS stream gage data as an aide in bankfull 

identification. The bankfull calibration procedure trained the surveyors in identifying bankfull at 

the gaged sites to make identifying bankfull at the ungaged less difficult. The recurrence intervals 

corresponding to the measured bankfull stages seem reasonable. Bankfull stage measured at 

Soquel and Pescadero Creek had corresponding recurrence intervals near 1.5 years (1.57 and 1.50 

respectively). This is near the expected bankfull recurrence interval for most streams. Bankfull 

recurrence interval for San Lorenzo River was 2.69 at Big Trees and 2.61 near Boulder Creek. 

These values are at the high end of the range for expected bankfull recurrence intervals. Since the 

sites are on the same stream and measured very close bankfull recurrence intervals, there is good 

reason to accept these values.   

The method of measurement of bankfull stage at the gaged locations may have incurred 

some error in the results. An auto level was used to measure to the bankfull level at the best 

bankfull indicators and then swung around to measure the corresponding stage. This method 

assumes that the bankfull follows a horizontal level throughout the stream, when actually it 
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follows the same average slope of the stream. Error is magnified as distance from the bankfull 

indicator increases. At some of the gaged sites, multiple measurements were taken on either side 

of the stage plate and averaged, which may have removed some of the error. One way to account 

for the slope would be to measure the stage of multiple bankfull indicators on either side of the 

stage plate, measure the distance to the indicators from the stage plate, and then interpolate the 

bankfull stage at the stage plate.  

Another source of error is the use of USGS 9-207 forms to determine bankfull geometry 

measurements because the exact location of the measurement is unknown. The method of using 

bankfull stage to determine other bankfull measurements using the 9-207 forms assumes that the 

measurement was made right at the stage plate. The cross section was probably measured some 

distance upstream or downstream of the stage plate, but was not recorded. Bankfull 

measurements may be slightly different from measurement right at the stage plate. Stream 

measurements were removed from the USGS online database due to this inaccuracy. According 

to the USGS, the stream measurements are not representative of the stream gaging station 

because the exact measurement location varies (USGS, 2008). The significance of this error is 

unknown, but could be studied by conducting cross-section surveys and comparing to the 

measurements from the 9-207 form.  

Regional Curve Equations 

Regional curve equations follow the same form (a power equation), but the coefficient 

and exponents differ. The values of the coefficients and exponents allow for quantitative 

comparison between regional curves. The equations can aid in analysis of the relationship 

between drainage area and the bankfull measurement. When analyzing the regional curve 

equations, the coefficient affects the line’s vertical position on the log-log plot while the exponent 

determines the slope of the line. A higher coefficient places the line higher on the plot and a 

higher exponent increases the slope of the line in a log-log plot. A higher coefficient causes the 
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dependent variable to increase at a faster rate as the dependent variable increases. When the 

exponent is greater than one, it means that the dependent variable increases at an increasing rate 

as the independent variable increases. An example of this is found in the equation for Discharge 

vs. Drainage Area where discharge increases at an increasing rate as drainage area increases. 

When the exponent is less than one, such as in the equation for Depth vs. Drainage Area, it means 

that the dependent variable increases at a decreasing rate as the independent variable increases. If 

the exponent had equaled one, it would signify that the dependent variable increases at an even 

rate as the dependent variable increases. This also means that for regional curves with exponents 

greater than one, the bankfull measurement increases slowly at low drainage areas, but fast at 

large drainage areas and visa versa for exponents less than one.  

Santa Cruz Mountains Regional Curves 

Equations for the four regional curves for the Santa Cruz Mountains Region are shown on 

each respective graph along with their R² values. The R² value is the proportion of variability in 

the dependent variable that can be explained by the independent variable. The R² values for the 

Santa Cruz Mountains Regional Curves range from 0.82 to 0.92. This range of R² values 

demonstrates a reasonably high correlation between drainage area and bankfull geometry 

measurements.  

All exponents in the regional curve equations are close to one or less than one. The 

exponent for the regional curve for discharge should be less than one because bankfull discharge 

does not increase as fast as drainage area (Dunne and Leopold, 1978). This is because storms do 

not occur evenly over a watershed, so the land area contributing to discharge must increase at a 

faster rate than the discharge. If discharge increases at a lower rate than drainage area, the 

regional curves for the other measurements should also have exponents less than one. This is 

because bankfull width, depth and cross-sectional area generally increase at a lower rate than 

discharge.  
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Because sample size is small (8), the power of the regression equation is fairly low. To 

increase the power of the regression equation, more measurements should be taken at various 

sites throughout the Santa Cruz Mountains. It would be best to measure sites with a wide range of 

drainage areas so that the regional curves could be applied to a wide range of project sites. It is 

not a good idea to extrapolate beyond the range of available data because it is uncertain how the 

variables will respond outside of the measured range.  

The data points are not expected to all fall on the curves because streams naturally have 

different channel shapes. Some streams are deep and narrow while others are wide and shallow. 

A stream with a higher width-to-depth ratio will plot a relatively high width and low depth for its 

drainage area and visa versa. One way to reduce this variability about the regional curve is to 

classify the streams and develop separate curves for each stream classification. Stream channel 

classification categorizes streams by channel shape as well as other parameters.  

Comparison with Pre-existing Regional Curves 

Compared to the regional curves created for Scotts Creek, the slopes of the regional 

curves for the Santa Cruz Mountains are steeper, meaning higher exponents. The regional curves 

with the closest slopes are found in the plot of Width vs. Drainage Area. The exponents are 

0.4213 for the Santa Cruz Mountains and 0.4101 for Scotts Creek. Regional curve equations with 

higher exponents mean that the bankfull measurement increases faster as drainage area increases 

than equations with lower exponents. The differences may be due to the fact that the Scotts Creek 

data only represents one watershed, while the Santa Cruz Mountains Data includes many 

watersheds. All streams have different channel geometry that may affect bankfull measurements. 

An incised or entrenched channel has less horizontal space to increase its width than a channel 

that is not incised. The relationship between cross-sectional area and discharge may change due 

to roughness of the channel. As roughness increases, cross-sectional area increases because 

velocity is decreased. Bankfull cross-sectional area measured in a stream with a high roughness 
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coefficient will be greater than in a stream with a low roughness coefficient. Depth is dependent 

on both width and cross-sectional area and therefore, may be affected by either incision or 

channel roughness. A possible interpretation of the lower slope of Scotts Creek regional curves is 

that Scotts Creek is incised and has a low roughness coefficient throughout the stream compared 

to most of the streams measured for the regional curves for the Santa Cruz Mountains.  

The regional curves for Scotts Creek fit better to the San Francisco Regional Curves both 

in slope and vertical placement than the regional curves for the Santa Cruz Mountains except for 

the regional curve for discharge. This may be because some data from Scotts Creek was discarded 

when plotting the regional curves due to error or uncertainty. It may be interesting to further 

investigate how the regional curves would change if some of this data was added back in to the 

graphs.  

Conclusion: 

 The regional curves developed for the Santa Cruz Mountains have a reasonably high 

probability of correctly predicting bankfull measurements given drainage area, as is evident by 

the reasonably high R² values. Although the exponents in the regional curve equations are close 

to one, each exponent should all technically be less than one. With increased sample size, the 

regional curves should be able to more accurately predict bankfull measurements. Stream channel 

classification may help further define the regional curves according to channel shape. 

 The regional curves for the Santa Cruz Mountains have steeper slopes than both Scotts 

Creek and San Francisco regional curves due to higher exponents. This may be explained by 

differences in channel geometry and roughness or by the selection process of the data.  

 The regional curves of the Santa Cruz Mountains could be used for rough estimations of 

bankfull measurements, but should be further developed and analyzed before fully relying on 

these curves for engineering purposes. This study could be repeated to verify accuracy of cross-
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section measurements and bankfull identification. Multiple hydrologists well trained in 

identifying bankfull could assist surveyors in accurately identifying bankfull. At the gaged sites, 

full stream cross-sections could be conducted so that errors from the 9-207 forms can be avoided. 

Accuracy could also be increased by measuring bankfull stage at gaged sites by accounting for 

the slope of the stream according to the method described in the “Bankfull Calibration” section.  

Additionally, more stream sites could be surveyed and added to the regional curves by 

following the same procedure. An analysis could be performed to determine how well the new 

site data aligns with the data collected in this study. A statistical analysis could be performed on 

the various regional curves once the Santa Cruz Mountains regional curves are further developed, 

to determine if the Santa Cruz Mountains regional curves are significantly different from the 

Scotts Creek and San Francisco regional curves.  
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EB Soquel C A SDF, CA 
East Branch of Soquel Creek at Long Ridge Road crossing in  

Soquel Demonstration Forest 
 
Field Cross-Section Data, Site Summary, and Stream Profile 
 
Distance 
(ft) 

Elevation 
(ft) Notes 

Area 
(sq ft) 

WP 
(ft)     

0.0 97.38 RB pin         
4.0 96.62           
7.0 96.48           
8.0 96.14           

10.5 93.76           
12.3 92.94           
13.2 92.63 BFR         
21.3 91.33   5.27 8.20  Slope =   1.42%
28.7 91.91   7.47 7.42  n =   0.043
34.3 90.66 WER 7.53 5.74  WP =  50.27
38.4 89.46   10.54 4.27  Cross-sectional area = 74.11
41.3 89.7   8.85 2.91  R =  1.47
45.6 90.11   11.72 4.32  Bank full width = 49.6
49.7 90.85 WEL 8.82 4.17  Bank full depth = 1.49
57.4 91.55   11.01 7.73  Bank full discharge = 395.57
62.8 92.63 BFL 2.92 5.51       
63.8 92.94        Watershed area (sq mi) = 10.930
70.5 95.07           

71.9 96.14 
Bottom of 
UC         

74.2 97.69 UC         
72.5 99.56           
74.0 100.03 LB pin         

  Totals = 74.11 50.27     
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San Vicente A CEMEX 
San Vicente Creek on CEMEX property northeast of Davenport, CA 

 
Field Cross-Section Data, Site Summary, and Stream Profile 

 
Distance 
(ft) 

Elevation 
(ft) Notes 

Area 
(sq ft) 

WP 
(ft)     

0 103.74 LB pin         
10 101.53           

13.5 100.44           
14.6 99.81 BFL         
15.5 99.04   0.36 1.18     
16.7 98.8   1.08 1.22  Slope =   1.73%
18.4 97.7 WEL 2.67 2.02  n =   0.036

22 97.18   8.57 3.64  WP =  26.88
26 97.18   10.56 4.00  Cross-sectional area = 55.71

27.7 96.93   4.70 1.72  R =  2.07
31.2 97.24   9.57 3.51  Bank full width = 25.4
34.2 97.19   7.82 3.00  Bank full depth = 2.19
37.2 97.69 WER 7.14 3.04  Bank full discharge = 491.62
39.3 99.1   2.99 2.53       

40 99.82 BFR 0.25 1.00  Watershed area (sq mi) = 10.501
43.6 101.4           
46.9 102.97           
48.8 103.9           
49.6 103.84 RB pin         

  Totals = 55.70 26.88     
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Opal C A Big Basin 
Opal Creek at Big Basin State Park northwest of park headquarters 

 
Field Cross-Section Data, Site Summary, and Stream Profile 

 
Distance 
(ft) 

Elevation 
(ft) Notes 

Area 
(sq ft) WP (ft)     

0.0 90.36 LB pin         
1.8 89.01           
4.7 88.42           
7.1 88.2           
8.8 87.52           
9.2 87.43 BFL         

10.0 87.27   0.06 0.79     
12.1 87.16   0.45 2.10  Slope =   0.75%
13.4 86.92   0.51 1.32  n =   0.027
14.7 86.83   0.72 1.30  WP =  27.22
15.7 86.69 WEL 0.67 1.01  Cross-sectional area = 14.89
19.6 86.68   2.91 3.90  R =  0.55
24.5 86.55   3.99 4.90  Bank full width = 27.1
26.7 86.53   1.96 2.20  Bank full depth = 0.55
29.1 86.65 WER 2.02 2.40  Bank full discharge = 47.47
29.9 86.7   0.60 0.80       
31.8 87.28   0.84 1.99  Watershed area (sq mi) = 3.38
33.1 87.4   0.12 1.31     

36.3 87.43 
Top of bar, 

BFR 0.05 3.20     
37.7 87.37           
39.2 89.16           
40.1 89.6 RB pin         

  Totals = 14.89 27.22     
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Fall C A Felton, CA 
Fall Creek at Felton near Fall Creek Drive 

 
Field Cross-Section Data, Site Summary, and Stream Profile 

 
Distance 
(ft) 

Elevation 
(ft) Notes 

Area 
(sq ft) WP (ft)     

0.0 104.47 LB pin         
4.4 101.77           
5.8 101.28           
6.9 101.02 BFL         
7.7 99.60 WEL 0.57 1.63  Slope =   2.37%

10.0 99.67   3.19 2.30  n =   0.043
12.9 99.28   4.48 2.93  WP =  20.93
15.6 99.41   4.52 2.70  Cross-sectional area = 30.80
19.6 99.07   7.12 4.01  R =  1.47
20.7 99.02   2.17 1.10  Bank full width = 19.1
22.1 99.02   2.80 1.40  Bank full depth = 1.61
24.3 99.45 WER 3.93 2.24  Bank full discharge = 212.15
25.4 99.65   1.62 1.12       
26.0 101.02 BFR 0.41 1.50  Watershed area (sq mi) = 4.97
27.2 103.20 RB pin         

  Totals = 30.80 20.93     
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1. Photos of Cross-Section at EB Soquel C A SDF 

 
Looking upstream 

 
Looking downstream 
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From right bank 

 
Temporary bench mark 
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2. Photos of Cross-Section at San Vicente A CEMEX 

 
Looking upstream 

 
Looking downstream 
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From right bank 

 
From left bank  
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3. Photos of Cross-Section at Opal C A Big Basin 

 
Looking downstream 

 
Looking upstream 
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From right bank 

 
From left bank 
 

 45



  

 
Temporary bench mark 

 
Path to Opal Creek 
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Path to bridge 
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4. Photos of Cross-Section at Fall C A Felton, CA 

 
Looking upstream 

 
Looking downstream and shot to temporary benchmark 
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From left bank 

 
From right bank 
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Temporary bench mark 
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1. Detailed Hand Drawn Map of EB Soquel C A SDF, CA 
 
 

 
 
2. Detailed Hand Drawn Map of San Vicente A CEMEX 
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3. Detailed Hand Drawn Map of Opal C A Big Basin 

 
4. Detailed Hand Drawn Map of Fall C A Felton, CA 
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