Scientists know that smelt use tidal ebbs and flows to migrate landward to spawn, but the degree to which external cues influence behavior remains unclear. In a new study published in the March 2021 issue of San Francisco Estuary and Watershed Science, researchers used computer modeling to predict smelt distribution based on hypothesized swimming behaviors. Six increasingly complex behaviors were tested. For example, the “passive” category assumes that smelt do not swim at all, simply drifting with currents and tides. At the other end of the spectrum, the smelt respond to both turbidity and salinity cues. After assigning a behavior to simulated smelt distributed across the Delta, researchers ran a 133-day simulation of water year 2002, then compared the modeled movements with observations from the 2002 Spring Kodiak Trawl Survey. The movement models that most closely matched distributions indicated by the survey data were those that incorporated some form of salinity response triggering migration (either overall salinity in the surrounding water or the rate of salinity increase). The study acknowledges that further refinements are needed to assess the influence of turbidity on smelt movement, due to the challenge of accurately predicting what is essentially a localized, constantly changing effect. In addition to providing insight into how Delta smelt respond to environmental cues, the study’s findings could also be used to anticipate the risk of fish being caught in water project facilities. According to Ed Gross, an author of the study, “Delta smelt behavior is likely an intermittent tidal migration, because passive behavior would not accomplish landward migration and persistent tidal migration also results in unrealistic distribution.” If turbidity and modeling refinements are made, and one or more behavior models match survey observations from multiple water years, the modeling approach developed by the study could provide real-time entrainment risk analysis based on water conditions in the Delta.

Pearls in the ocean of information that our reporters didn’t want you to miss
Simulated smelt distribution (green dots) representing responses to salinity and turbidity. The area outlined in red is the region of simulated release (black outlined areas are different study regions). Image: Gross, et al.
 

New insights into Delta smelt swimming behavior could help locate the increasingly elusive fish and prevent losses at the pumps.

Scientists know that smelt use tidal ebbs and flows to migrate landward to spawn, but the degree to which external cues influence behavior remains unclear. In a new study published in the March 2021 issue of San Francisco Estuary and Watershed Science, researchers used computer modeling to predict smelt distribution based on hypothesized swimming behaviors. Six increasingly complex behaviors were tested. For example, the “passive” category assumes that smelt do not swim at all, simply drifting with currents and tides. At the other end of the spectrum, the smelt respond to both turbidity and salinity cues. After assigning a behavior to simulated smelt distributed across the Delta, researchers ran a 133-day simulation of water year 2002, then compared the modeled movements with observations from the 2002 Spring Kodiak Trawl Survey. The movement models that most closely matched distributions indicated by the survey data were those that incorporated some form of salinity response triggering migration (either overall salinity in the surrounding water or the rate of salinity increase). The study acknowledges that further refinements are needed to assess the influence of turbidity on smelt movement, due to the challenge of accurately predicting what is essentially a localized, constantly changing effect. In addition to providing insight into how Delta smelt respond to environmental cues, the study’s findings could also be used to anticipate the risk of fish being caught in water project facilities. According to Ed Gross, an author of the study, “Delta smelt behavior is likely an intermittent tidal migration, because passive behavior would not accomplish landward migration and persistent tidal migration also results in unrealistic distribution.” If turbidity and modeling refinements are made, and one or more behavior models match survey observations from multiple water years, the modeling approach developed by the study could provide real-time entrainment risk analysis based on water conditions in the Delta.

About the author

Michael Hunter Adamson was born and partly raised in the Bay Area and spent his childhood balancing adventure with mischief. As an equally irresponsible adult he has worked for The Nature Conservancy, the arts and education nonprofit NaNoWriMo, taught English in Madrid-based High School equivalent, and volunteers with The Marine Mammal Center. As a writer for Estuary and AcclimateWest, Michael employs his love for nature and his interest in people to help tell the unfolding story of the living Earth.

Related Posts

A large pulse of water sent through the Yolo Bypass in summer 2016 boosted phytoplankton biomass and food web conditions in Cache Slough and the lower Sacramento River, a new report confirms.

 “Our goal was to improve estuarine habitat by increasing net flows through the Cache Slough Complex to enhance downstream transport of lower trophic-level resources, an important driver for fish such as the endangered Delta Smelt,” write the authors—including esteemed (and recently retired) California Department of Water Resources lead scientist Ted...

New research indicates that survival of juvenile Chinook salmon in the Sacramento River system can be significantly boosted by achieving key thresholds for river flow.

The findings, published in the journal Ecosphere, add important context to the general scientific understanding that more water in the river improves fish survival. Previous studies, the authors explain in their paper, have demonstrated that more juvenile salmon migrating toward the sea complete their journey when the Sacramento River system...

Electrofishing is a powerful but underutilized tool for monitoring Delta fish, particularly species favoring “structured” habitats that are difficult to sample using more common methods like trawls and seines.

By analyzing fish catch data from past surveys, researchers Ryan McKenzie, of the US Fish and Wildlife Service, and Brian Mahardja, of the US Bureau of Reclamation, determined that electrofishing resulted in better detection rates for many native and non-native species than net-based surveys. Although electrofishing is currently restricted to...